Genetic variability of human brain size and cortical gyral patterns.
نویسندگان
چکیده
The development of the primate brain is determined by an interaction of genetic programmes and environmental events. We examined quantitatively the contribution of each of these factors to adult human brain hemisphere volume and global cortical gyral patterns by comparing 3-D MRI renderings of brains of 10 pairs of monozygotic (MZ) and nine pairs of same-sex dizygotic (DZ) twins. Brain volume was highly correlated in MZ pairs [unbiased intraclass correlation coefficient, ICC(U) = 0.95, P < 0.00001], but not in DZ pairs [ICC(U) = 0.35, P = 0.09]. Structural equation modelling indicated a 94% heritability of brain volume. Gyral patterns appeared visually more similar in MZ than in DZ pairs. This was confirmed statistically by a cross-correlation analysis of rendered images of lateral and mesial cortical surfaces. MZ twins exhibited significantly greater similarity than did DZ twins in comparisons of gyral patterns; DZ twins were not more alike than unrelated pairings. Ipsilateral hemispheres were significantly more alike than contralateral hemispheres within MZ pairs, but not within DZ pairs. Contralateral hemispheres within an individual were more alike than contralateral hemispheres between twins in the DZ pairs, but not in the MZ pairs. Heritability for gyral-sulcal patterns, as reflected in the cross-correlation data, was low and ill defined. These results indicate that human cerebral size is determined almost entirely by genetic factors and that overall cortical gyral patterns, though significantly affected by genes, are determined primarily by nongenetic factors.
منابع مشابه
Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain.
Striking variations in brain structure, especially in the gyral patterns of the human cortex, present fundamental challenges in human brain mapping. Probabilistic brain atlases, which encode information on structural and functional variability in large human populations, are powerful research tools with broad applications. Knowledge-based imaging algorithms can also leverage atlased information...
متن کاملA graph matching-based sulcal pattern analysis: Application to the study of twin brains
Introduction Gyral folding has long fascinated scientists, as the character of gyral folding is related to functional compartmentalization. There is a large variability in the pattern of gyral folding across individuals and in genetic disorders but without means of quantifying these differences, it is difficult to define their functional significance or better understand their genetic/epigeneti...
متن کاملThree-dimensional mapping of gyral shape and cortical surface asymmetries in schizophrenia: gender effects.
OBJECTIVE People with schizophrenia exhibit abnormalities in brain structure, often in the left hemisphere. Disturbed structural lateralization is controversial, however, and effects appear mediated by gender. The authors mapped differences between schizophrenic and normal subjects in gyral asymmetries, complexity, and variability across the entire cortex. METHOD Asymmetry and shape profiles ...
متن کاملExploring Gyral Patterns of Infant Cortical Folding Based on Multi-view Curvature Information
The human cortical folding is intriguingly complex in its variability and regularity across individuals. Exploring the principal patterns of cortical folding is of great importance for neuroimaging research. The term-born neonates with minimum exposure to the complicated environments are the ideal candidates to mine the postnatal origins of principal cortical folding patterns. In this work, we ...
متن کاملCortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas.
We report the first detailed population-based maps of cortical gray matter loss in Alzheimer's disease (AD), revealing prominent features of early structural change. New computational approaches were used to: (i) distinguish variations in gray matter distribution from variations in gyral patterns; (ii) encode these variations in a brain atlas (n = 46); (iii) create detailed maps localizing gray...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 120 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1997